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Abstract
To evaluate the effect of sub-lethal exposure to cold atmospheric plasma (CAP) on their antibiotic resistance, 
meticillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia 
coli, Streptococcus mutans, and Candida albicans were exposed in vitro to a commercially available CAP. This 
antimicrobial CAP inhibited growth but changed survivors’ antibiotic resistance.
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Introduction
Passing an impedance-controlled electric current 
through atmospheric air produces a glow discharge 
between the electrodes. The resulting ionized air 
is referred to as cold atmospheric plasma (CAP) 
that contains reactive nitrogen and oxygen species, 
including ozone. Reportedly, CAP has efficacy against 
diverse pathogens, including Staphylococcus aureus,1, 2 
Pseudomonas aeruginosa,3 and Candida albicans.4 Killing 
is attributed to microbial cell-membrane damage.5 
There are diverse CAP generation and delivery 
systems, including single or multiple plasma jets6 and 
dialectric barrier discharges.7

Professionals involved in the prevention of healthcare 
associated infections must be aware of the commercial 
availability and use of CAP devices both in healthcare 
facilities and at home, with potential applications 
ranging from disinfection of inert surfaces to the 
treatment of chronic wounds.6-8

At a time when antibiotic resistance poses a growing 
challenge, it has been observed that a sub-lethal 
exposure of S. aureus to argon plasma may change the 
antibiotic resistance profile in the surviving colonies.9 
The aim of this pilot investigation was to assess in vitro 
the antimicrobial efficacy of a commercially available 
battery-powered CAP delivery system and to test 
the surviving colonies for possible changes in their 
antibiotic resistance profiles.

Materials and methods
Plasma generation system
We tested a commercially available US-patented CAP 
device. This portable battery-powered generator 
has a diaelectric plate array with multiple plasma 
emitters, collectively intended to produce a 3.5 X 6 
cm corona discharge. This CAP generator operates 
in atmospheric air to release reactive nitrogen and 
oxygen species, including ozone, with negligible 
ultraviolet (UV)-C emission. Manufacturer’s 
instructions indicate that the array is to be handheld 
< 1 cm directly above the patient’s skin.

Test microorganisms
The following strains with known antibiotic resistance 
profiles were tested. Two methicillin-resistant S. 
aureus (MRSA) ATCC 43300; and USA300 NRS643; 
Staphylococcus epidermidis NRS 101; P. aeruginosa ATCC 

25619; Escherichia coli ATCC 10586; Streptococcus 
mutans ATTC 25175; and C. albicans ATCC 10231.

Microbiological procedures
Each test strain was suspended in tryptic soy broth 
(Bioxon, Mexico) and its concentration adjusted using 
a MacFarland Standard, serial dilutions were tested 
to optimize the inoculum to 105 cfu/mL. Each bacterial 
strain was seeded in triplicate onto blood agar 
(Bioxon) and Mueller-Hinton agar (Bioxon). Candida 
spp. was seeded in triplicate onto dextrose agar with 
chloramphenicol (Bioxon), and onto Sabourad agar 
(Bioxon).

Immediately after seeding, using a plastic spacer the 
array was held 4 mm above the agar, allowing the 
microorganisms’ uniform immersion into the glow of 
the CAP-corona at the maximum power setting (3176 
Hertz) for 10 minutes. After aerobic incubation at 
37ºC for 24 hours, the plates exposed to CAP were 
examined and from each culture, a surviving colony 
was retrieved and seeded in tryptic soy broth (Bioxon). 
The survivor’s antibiotic or antifungal susceptibility or 
resistance was evaluated after 24 hours’ incubation at 
37ºC.

Antibiotic and Antifungal susceptibility testing
To screen for changes in the antibiotic resistance 
profile, the kit API ATB-G5 (BioMérieux, France) 
was used as per manufacturer’s instructions. 
This kit challenges bacteria with 21 antibiotics, 
some of them in two concentrations, allowing a 
preliminary minimal inhibitory concentration (MIC) 
determination: amoxicillin, amoxicillin+clavulanic 
acid, piperacillin, piperacillin+tazobactam, ticarcillin, 
ticarcillin+clavulanic acid, cephalothin, cefoxitin, 
cefotaxime, ceftazidime, cefepime, cefuroxime, 
meropenem, imipenem, ceftazidime 1, cotrimoxazole, 
tobramycin, amikacin, gentamicin, netilmicin, and 
ciprofloxacin. Antibiotic concentrations in ATB-G5 
correspond with Clinical Laboratory Standards 
Institute (CLSI) standards. For comparison against 
CAP exposed survivors, the unexposed strain was 
included as control.

For MRSA strains ATCC-43300 and USA300, 
antimicrobial disk-susceptibility tests were 
performed, as indicated in the CLSI method,10 against 
nine additional antibiotics; fosfomycin, trimethoprim-
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sulfamethoxazole, penicillin G, vancomycin, 
tetracycline, erythromycin, oxacillin, clindamycin, 
and cephalothin (Polidiscos. Productos Biológicos 
de México, Mexico). Fluconazole and nystatin discs 
(Oxoid. Hants, UK) were used for C. albicans ATCC 
10231 on Sabourad agar.

Results
For all type strains tested, exposure of seeded plates to 
a sub-lethal dose of CAP consistently inhibited colony 
growth in the area directly under the array’s corona 
discharge. The typical rectangle-shaped inhibition of 
growth is shown in Figure 1.

API ATB-G5 analysis of the surviving colonies, 
retrieved from the triplicate’s inhibition areas, 
consistently revealed changes in acquired resistance 
or susceptibility to antibiotics (Table I). MRSA ATCC-
43300 became susceptible (from 8 mg/L to < 2 mg/L 
to cefotaxime and cefepime. MRSA strain USA300 
showed no change. Staphylococcus epidermidis became 
resistant to ceftazidime (from 8 mg/L to 16 mg/L and 
susceptible (from 8 mg/L to < 2 mg/L) to cefotaxime. 
Pseudomonas aeruginosa became susceptible to five 
antibiotics and resistant to amoxicillin (from 2 mg/L 
to 8 mg/L) and ciprofloxacin (from <1 mg/L to 1 mg/L). 
Escherichia coli acquired resistance to five antibiotics 
most notably ceftazidime and amikacin (from <2 mg/L 
to 16 mg/L) and became susceptible to imipenem. 
Streptococcus mutans acquired resistance to five 
antibiotics most notably piperacillin, ticarcillin and 
ceftazidime (from <2 mg/L to 16 mg/L) and became 
susceptible to five.

Antibiotic disc testing revealed that MRSA USA300 
became resistant to trimethoprim-sulfamethoxazole 
while the resistance profile of MRSA ATCC-43300 
remained unchanged. Candida albicans 10231 
remained resistant to fluconazole and susceptible to 
nystatin.

Discussion
The results of this pilot study demonstrate that the 
corona discharge from a commercially available 
battery-powered CAP array has antimicrobial activity 
against MRSA, S. epidermidis, P. aeruginosa, E. coli, S. 
mutans and C. albicans.

The widely reported broad spectrum antimicrobial 
efficacy of CAP makes it a promising technology with 
diverse applications ranging from disinfection of 
inert surfaces to antimicrobial treatment of skin and 
mucosal lesions.6-8 However, Lührmann et al. described 
increased resistance in MRSA surviving exposure to 
an argon plasma.9 Our observations provide additional 
evidence that sub-lethal exposure to CAP may induce 
changes in the antibiotic resistance profile, where 
increased antibiotic resistance is a serious cause for 
concern.

Future quantitative research will address MICs and 
the microbial mechanisms involved in acquiring 
resistance or gaining susceptibility, which are beyond 
the scope of the present investigation.

Not all CAP generation and delivery systems are equal 
in power or intended applications. Other research 
groups can adjust their CAP systems to study the in 
vitro effects of sub-lethal exposure, determine MICs 
and screen surviving colonies for the expression of 
resistance genes.

During evaluation of CAP for wastewater treatment, 
it was documented that at lower plasma intensities, 
the wastewater itself shielded E. coli and MRSA cells 
from CAP and that the cell’s components slowed 
the degradation of intracellular antibiotic resistance 
genes.11,12 In a similar manner, eliminating all viable 
microorganisms from wounds will present a challenge 
in clinical use, where microbial pathogens will be 
embedded in mixed-species biofilms, deep in the 
lesion, surrounded by tissue and exudate. Moreover, 
observations from industry indicate that hydroxyl 
radicals and ozone in CAP degrade antibiotics,13 
which has potential relevance for patients receiving 
conventional antibiotic treatment and CAP therapy 
on their wounds.

Our results provide evidence that warrants a note 
of caution for manufacturers and potential users of 
CAP. To render this technology effective and safe for 
use on human patients, the exposure to CAP must 
be optimized, adjusting diverse variables such as the 
field’s intensity, application time, and standardized 
distance between the array and the lesion. Moreover, 
the anti-microbial application of CAP onto skin or 
mucous membranes requires stringent validation.



Int J Infect Control 2020, v16:i1 doi: 10.3396/ijic.v16i1.004.20 Page 4 of 6
not for citation purposes

Cold plasma changes antibiotic resistance Martiěnez-Barrera et al

The community of professionals dedicated to infection 
control must be aware of the potential risks derived 
from the misuse of diverse CAP devices, including 
those versions now available for personal use.
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Figure 1. Typical area of inhibited growth after direct exposure to a sub-lethal dose of Cold atmospheric Plasma. 
The array was held 4 mm above the agar at 3176 Hertz for 10 min.
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